基于蚁群算法的多目标最优旅游线路规划设计
翟淞(1987-),男,硕士,研究方向为智慧旅游规划与开发。E-mail: 110933989@qq.com |
收稿日期: 2022-05-09
修回日期: 2022-10-08
网络出版日期: 2022-12-06
基金资助
山东省人文社会科学基金项目(2020-NDJJ-09)
Multi-objective optimal tourism itinerary planning and design:The application of ant colony algorithm
Received date: 2022-05-09
Revised date: 2022-10-08
Online published: 2022-12-06
旅游线路受供需双方旅行成本、旅游者体验感和目的地交通的影响。传统旅游线路设计主要采用基于目的地之间空间距离的蚁群算法。本研究结合帕累托最优模型,综合考虑旅游目的地之间的空间距离、天气状况和交通状况等多种因素,提出改进型蚁群算法的多目标最优旅游线路规划设计方法。通过MATLAB软件进行仿真实验进行检验,固定旅行时长,从空间距离、交通体验指数和游览体验指数(基于天气状况)角度对改进后的方法进行综合评价。结果表明:在以多个旅游城市(景点)为对象的试验中,传统蚁群算法为了获得最短距离,大量牺牲了其他两项指数的优化;改进后的蚁群算法虽然增加了线路距离,但使旅游者获得了多项旅游体验,验证了帕累托最优模型下多目标最优旅游线路规划设计的有效性。
翟淞 , 吕宁 , 李烨 , 房俊晗 . 基于蚁群算法的多目标最优旅游线路规划设计[J]. 中国生态旅游, 2022 , 12(5) : 848 -860 . DOI: 10.12342/zgstly.20220059
Travel itinerary is affected by the spatial distance between destinations, tourism experience and traffic conditions. The traditional travel itinerary design is mainly based on the spatial distance between destinations with the application of ant colony algorith. Based on ant colony algorithm and Pareto optimal model, this paper constructs a multi-objective optimal tourism route planning and design method considering the factors of spatial distance between destinations, weather conditions and transportation. Through MATLAB simulation experiment, with the fixed travel time, the improved method is comprehensively evaluated from the perspectives of spatial distance, traffic experience index and browsing experience index (based on weather conditions). The results show that in the experiments of multiple tourist cities (scenic spots), the traditional ant colony algorithm sacrifices a lot of optimization of the two indexes in order to obtain the shortest distance. Although the improved ant colony algorithm increases the route distance, tourists can obtain more tourism experiences, which verifies the effectiveness of multi-objective optimal tourism itinerary planning and design under the Pareto optimal model.
图3 仿真环境下的多城市(景点)分布Fig. 3 Multiple cities (scenic spots) distribution in simulated environment |
表1 多个城市(景点)之间的总体交通状况Tab. 1 General traffic conditions between multiple cities (scenic spots) |
序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | 0.7 | 1.0 | 0.1 | 0.1 | 0.5 | 0.5 | 0.4 | 0.2 | 0.1 | 0.3 | 0.5 | 0.9 | 0.1 | 0.5 | 0.5 | 0.4 | 0.6 |
2 | 0.7 | - | 0.5 | 0.7 | 0.2 | 0.2 | 0.4 | 0.5 | 0.1 | 0.3 | 0.5 | 0.6 | 0.2 | 0.6 | 0.7 | 0.8 | 0.9 | 0.8 |
3 | 1.0 | 0.5 | - | 0.5 | 0.2 | 0.1 | 0.5 | 0.5 | 0.6 | 0.2 | 0.1 | 0.3 | 0.2 | 0.1 | 0.5 | 0.5 | 0.1 | 0.2 |
4 | 0.1 | 0.7 | 0.8 | - | 0.8 | 0.7 | 0.6 | 0.5 | 0.3 | 0.2 | 0.1 | 0.7 | 0.1 | 0.2 | 0.3 | 0.1 | 0.5 | 0.8 |
5 | 0.1 | 0.2 | 0.2 | 0.8 | - | 0.5 | 0.5 | 0.5 | 0.5 | 0.3 | 0.6 | 0.8 | 0.6 | 0.2 | 0.5 | 0.7 | 0.4 | 0.8 |
6 | 0.5 | 0.2 | 0.1 | 0.7 | 0.5 | - | 0.7 | 0.2 | 0.7 | 0.8 | 0.4 | 0.5 | 0.6 | 0.1 | 0.2 | 0.5 | 0.9 | 0.2 |
7 | 0.5 | 0.4 | 0.5 | 0.6 | 0.5 | 0.7 | - | 0.9 | 0.1 | 0.2 | 0.4 | 0.3 | 0.5 | 0.6 | 0.7 | 0.8 | 0.5 | 0.4 |
8 | 0.4 | 0.5 | 0.5 | 0.5 | 0.5 | 0.2 | 0.9 | - | 0.8 | 0.5 | 0.2 | 0.1 | 0.2 | 0.1 | 0.5 | 0.5 | 0.5 | 0.1 |
9 | 0.2 | 0.1 | 0.6 | 0.3 | 0.5 | 0.7 | 0.1 | 0.8 | - | 0.4 | 0.4 | 0.2 | 0.6 | 0.4 | 0.5 | 0.7 | 0.8 | 0.2 |
10 | 0.1 | 0.3 | 0.2 | 0.2 | 0.3 | 0.8 | 0.2 | 0.5 | 0.4 | - | 0.7 | 0.2 | 0.3 | 0.2 | 0.2 | 0.5 | 0.5 | 0.3 |
11 | 0.3 | 0.5 | 0.1 | 0.1 | 0.6 | 0.4 | 0.4 | 0.2 | 0.4 | 0.7 | - | 0.3 | 0.2 | 0.4 | 0.1 | 0.5 | 0.5 | 0.7 |
12 | 0.5 | 0.6 | 0.3 | 0.7 | 0.8 | 0.5 | 0.3 | 0.1 | 0.2 | 0.2 | 0.3 | - | 0.1 | 0.2 | 0.3 | 0.2 | 0.1 | 0.7 |
13 | 0.9 | 0.2 | 0.2 | 0.1 | 0.6 | 0.6 | 0.5 | 0.2 | 0.6 | 0.3 | 0.2 | 0.1 | - | 0.8 | 0.1 | 0.2 | 0.5 | 0.5 |
14 | 0.1 | 0.6 | 0.1 | 0.2 | 0.2 | 0.1 | 0.6 | 0.1 | 0.4 | 0.2 | 0.4 | 0.2 | 0.8 | - | 0.9 | 0.2 | 0.1 | 0.1 |
15 | 0.5 | 0.7 | 0.5 | 0.3 | 0.5 | 0.2 | 0.7 | 0.5 | 0.5 | 0.2 | 0.1 | 0.3 | 0.9 | 0.9 | - | 0.8 | 0.2 | 0.1 |
16 | 0.5 | 0.8 | 0.5 | 0.1 | 0.7 | 0.5 | 0.8 | 0.5 | 0.7 | 0.5 | 0.5 | 0.2 | 0.2 | 0.2 | 0.8 | - | 0.6 | 0.2 |
17 | 0.4 | 0.9 | 0.1 | 0.5 | 0.4 | 0.9 | 0.5 | 0.5 | 0.8 | 0.5 | 0.5 | 0.1 | 0.1 | 0.1 | 0.2 | 0.6 | - | 0.1 |
18 | 0.6 | 0.8 | 0.2 | 0.8 | 0.8 | 0.2 | 0.4 | 0.1 | 0.2 | 0.7 | 0.7 | 0.7 | 0.1 | 0.1 | 0.1 | 0.2 | 0.1 | - |
表2 多个城市(景点)连续3天的天气情况Tab. 2 Weather conditions in multiple cities (scenic spots) for three consecutive days |
序号 | 1日 | 2日 | 3日 | 序号 | 1日 | 2日 | 3日 |
---|---|---|---|---|---|---|---|
1 | 0.1 | 0.6 | 0.6 | 10 | 0.6 | 0.5 | 0.3 |
2 | 0.7 | 0.8 | 0.9 | 11 | 0.7 | 0.4 | 0.3 |
3 | 0.9 | 0.8 | 0.8 | 12 | 0.1 | 0.6 | 0.7 |
4 | 0.5 | 0.8 | 0.9 | 13 | 0.3 | 0.5 | 0.5 |
5 | 0.9 | 0.6 | 0.5 | 14 | 0.6 | 0.7 | 0.7 |
6 | 0.6 | 0.4 | 0.8 | 15 | 0.5 | 0.7 | 0.8 |
7 | 0.5 | 0.8 | 0.8 | 16 | 0.6 | 0.3 | 0.8 |
8 | 0.5 | 1.0 | 1.0 | 17 | 0.8 | 0.5 | 0.8 |
9 | 0.4 | 0.5 | 0.7 | 18 | 0.1 | 0.5 | 0.9 |
表3 回到原出发点的规划响应时间对比表(秒)Tab. 3 The comparison of planned response time for returning the original starting point (seconds) |
方法对比 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
改进算法 | 1.0 | 1.2 | 1.1 | 1.1 | 1.1 | 1.1 | 1.0 | 1.0 | 1.1 | 1.1 |
传统算法 | 1.5 | 1.5 | 1.3 | 1.5 | 1.3 | 1.4 | 1.6 | 1.5 | 1.5 | 1.3 |
表4 不回到原出发点的规划响应时间对比表(秒)Tab. 4 The comparison of planned response time without returning to the original starting point (seconds) |
方法对比 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
改进算法 | 0.9 | 0.8 | 0.9 | 1.0 | 0.9 | 0.8 | 0.9 | 0.8 | 0.8 | 1.0 |
传统算法 | 1.2 | 1.3 | 1.2 | 1.3 | 1.3 | 1.2 | 1.1 | 1.2 | 1.4 | 1.3 |
[1] |
李渊, 丁燕杰, 王德. 旅游者时间约束和空间行为特征的景区旅游线路设计方法研究[J]. 旅游学刊, 2016, 31(9): 50-60.
[
|
[2] |
黄勇, 王亚风, 黄晖, 等. 风景名胜区游线网络结构测评及规划优化: 以重庆长寿湖为例[J]. 地域研究与开发, 2018, 37(3): 107-112.
[
|
[3] |
保继刚, 杨虹霓, 翁时秀. 中国旅游地理学的发展与创新[J]. 经济地理, 2021, 41(10): 79-86.
[
|
[4] |
|
[5] |
包战雄. 台湾地区旅游客流与气象因子的关系研究[D]. 福州: 福建师范大学, 2016.
[
|
[6] |
彭红松, 刘晗, 尚晓艳, 等. 旅游衔接2030年可持续发展目标: 文献回顾与未来议程[J]. 中国生态旅游, 2022, 12(2): 220-236.
[
|
[7] |
高悦尔, 崔桂籽, 胥川, 等. 基于浮动车数据的城市旅游景点周边路网交通状态评价[J]. 经济地理, 2019, 39(3): 225-231.
[
|
[8] |
王姣娥, 李涛. 交通强国背景下中国交旅融合研究进展与展望[J]. 中国生态旅游, 2022, 12(1): 1-15.
[
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
/
〈 |
|
〉 |