共享民宿空间集聚特征及其影响机制研究——以北京市Airbnb为例
贾文通(1997-),硕士研究生,主要研究方向为旅游地理与旅游规划。E-mail: sculy_jwt@qq.com |
收稿日期: 2021-09-23
要求修回日期: 2021-10-19
网络出版日期: 2022-05-30
基金资助
国家自然科学基金项目(42071175)
国家自然科学基金项目(42101218)
版权
Spatial clustering characteristics and influencing mechanism of peer-to-peer accommodations: The case of Airbnb in Beijing
Received date: 2021-09-23
Request revised date: 2021-10-19
Online published: 2022-05-30
Copyright
在构建“双循环”新发展格局的时代背景下,共享民宿的科学布局对有效释放旅游市场需求潜力,促进国内大循环的畅通和发展,具有积极的意义。本文以北京市Airbnb为例,综合运用空间分析和地理探测器等方法探究了共享民宿的空间集聚特征及其影响机制。结果表明:(1) Airbnb在空间上呈显著的集聚分布,整体上表现出“大集聚、小分散”的空间形态,形成4个明显的高密度核心区;(2) 置信度高于99 %的热点区所占比重最大,主要集聚在市中心周围至东四环附近地区,且Airbnb与其他相关地理要素存在不同程度的空间集聚;(3) 休闲娱乐设施数量、距市中心距离和公共服务设施数量等因素的解释力较强,双因子交互作用的解释力均强于单因子,休闲娱乐设施数量对因子交互作用的影响最大;(4) 在影响机制中,房东作为供给者,其选址行为和主观意愿为基础因素;房客作为需求方,其多样化的需求成为主导因素;政府作为监管者,其宏观调控举措是调节因素;平台作为管理者,其战略决策和市场推广是引导因素。不同利益主体之间的耦合交互与权衡制约,各类要素在不同发展阶段的综合作用,最终形成了影响共享民宿空间集聚特征的合力。
贾文通 , 黄震方 , 洪学婷 , 郭叙淇 . 共享民宿空间集聚特征及其影响机制研究——以北京市Airbnb为例[J]. 中国生态旅游, 2021 , 11(5) : 751 -766 . DOI: 10.12342/zgstly.20210091
China has been accelerating the construction of a “dual circulation” development pattern, which takes the domestic market as the mainstay. The rapid development of peer-to-peer (P2P) accommodations has drawn great academic attention, as it could improve the utilization rate of idle housing resources and expand the domestic tourism market demand. However, the geographic studies of P2P accommodation in China are relatively scant. Accordingly, this study sought to identify spatial clustering characteristics and explore influencing mechanism of P2P accommodations from a geographic perspective. Airbnb in Beijing was selected as the case study. Exploratory spatial analysis and Geodetector were employed. The findings suggested that: (1) Airbnb listings were gathered in the center of the city, and sparsely distributed in the peripheral areas. (2) Hot spots were clustered in and around the fourth ring road, and there were different degrees of spatial clustering between Airbnb and other related geographical elements. (3) The number of recreational facilitir, distance to the city center, and the number of public service facilities had stronger explanatory power. The explanation power of double-factor interactions were stronger than which of single factors. (4) The clustering characteristics of Airbnb in Beijing were the result of the coupling and interaction among various elements, namely the hosts, guests, government, and platform, and these elements affected in different forms and to different degrees. Theoretically, this paper deepen the research on the tourism accommodation industry in China. Practically, empirical evidence from this study has great implications for the layout of P2P accommodations and urban governance in the future.
表1 Airbnb与其他相关地理要素的双变量全局Moran's I统计值Tab. 1 Bivariate global Moran's I statistics of Airbnb and other related geographic elements |
Airbnb-星级酒店 | Airbnb-经济型酒店 | Airbnb-旅游风景区 | Airbnb-住宅区 | Airbnb-生活配套设施 | |
---|---|---|---|---|---|
Moran's I | 0.408 | 0.469 | 0.186 | 0.139 | 0.446 |
Z值 | 35.563 | 38.347 | 17.379 | 12.953 | 38.420 |
注:表中所有Z值其p值均小于0.001。 |
表2 影响因素指标体系Tab. 2 Index system of influencing factors |
指标维度 | 探测因子 | 因子阐释 |
---|---|---|
经济环境 | 国内生产总值X1 | 提取格网内的国内生产总值 |
房价水平X2 | 格网内小区房价的均值 | |
人口因素 | 人口数量X3 | 提取格网内的总人口数 |
人口活跃度X4 | 格网内新浪微博签到数量 | |
交通可达性 | 距机场距离X5 | 格网中心至最近机场的直线距离 |
距火车站距离X6 | 格网中心至最近火车站的直线距离 | |
距长途汽车站距离X7 | 格网中心至最近长途汽车站的直线距离 | |
距市中心距离X8 | 格网中心至市中心(天安门)的直线距离 | |
距主干道距离X9 | 格网中心至最近主干道的直线距离 | |
距地铁站距离X10 | 格网中心至最近地铁站的直线距离 | |
生活便利度 | 公共服务设施数量X11 | 格网内公共服务设施数量 |
购物服务设施数量X12 | 格网内购物服务设施数量 | |
餐饮服务设施数量X13 | 格网内餐饮服务设施数量 | |
休闲娱乐设施数量X14 | 格网内休闲娱乐设施数量 | |
距三甲医院距离X15 | 格网中心至最近三甲医院的直线距离 | |
距高等院校距离X16 | 格网中心至最近高等院校的直线距离 | |
旅游吸引力 | 距高级别旅游景区距离X17 | 格网中心至最近4A或5A景区的直线距离 |
其他旅游资源数量X18 | 格网内其他旅游资源数量 |
表3 北京市Airbnb空间集聚特征的因子探测结果Tab. 3 Factor detection results on the spatial clustering characteristics of Airbnb in Beijing |
影响因素 | q值 | 影响因素 | q值 |
---|---|---|---|
国内生产总值X1 | 0.2474 | 距地铁站距离X10 | 0.2316 |
房价水平X2 | 0.3213 | 公共服务设施数量X11 | 0.4058 |
人口数量X3 | 0.3087 | 购物服务设施数量X12 | 0.2228 |
人口活跃度X4 | 0.3888 | 餐饮服务设施数量X13 | 0.3648 |
距机场距离X5 | 0.1480 | 休闲娱乐设施数量X14 | 0.4280 |
距火车站距离X6 | 0.2043 | 距三甲医院距离X15 | 0.1863 |
距长途汽车站距离X7 | 0.2877 | 距高等院校距离X16 | 0.1530 |
距市中心距离X8 | 0.4174 | 距高级别旅游景区距离X17 | 0.1054 |
距主干道距离X9 | 0.0527 | 其他旅游资源数量X18 | 0.1960 |
注:表中所有指标的q值其p值均小于0.001。 |
表4 北京市Airbnb空间集聚特征的交互探测结果Tab. 4 Interactive detection results on the spatial clustering characteristics of Airbnb in Beijing |
q值 | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | X12 | X13 | X14 | X15 | X16 | X17 | X18 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X1 | 0.25 | |||||||||||||||||
X2 | 0.40 | 0.32 | ||||||||||||||||
X3 | 0.36 | 0.46 | 0.31 | |||||||||||||||
X4 | 0.50 | 0.52 | 0.55 | 0.39 | ||||||||||||||
X5 | 0.36 | 0.42 | 0.44 | 0.51 | 0.15 | |||||||||||||
X6 | 0.38 | 0.41 | 0.39 | 0.47 | 0.34 | 0.20 | ||||||||||||
X7 | 0.44 | 0.47 | 0.42 | 0.55 | 0.40 | 0.39 | 0.29 | |||||||||||
X8 | 0.48 | 0.50 | 0.48 | 0.55 | 0.54 | 0.45 | 0.46 | 0.42 | ||||||||||
X9 | 0.29 | 0.36 | 0.36 | 0.45 | 0.21 | 0.24 | 0.32 | 0.46 | 0.05 | |||||||||
X10 | 0.37 | 0.42 | 0.40 | 0.47 | 0.36 | 0.35 | 0.38 | 0.47 | 0.25 | 0.23 | ||||||||
X11 | 0.53 | 0.57 | 0.57 | 0.59 | 0.53 | 0.47 | 0.54 | 0.54 | 0.42 | 0.46 | 0.41 | |||||||
X12 | 0.42 | 0.53 | 0.49 | 0.53 | 0.38 | 0.38 | 0.43 | 0.50 | 0.26 | 0.40 | 0.44 | 0.22 | ||||||
X13 | 0.52 | 0.57 | 0.57 | 0.60 | 0.51 | 0.48 | 0.54 | 0.57 | 0.40 | 0.47 | 0.48 | 0.43 | 0.36 | |||||
X14 | 0.54 | 0.59 | 0.57 | 0.59 | 0.53 | 0.50 | 0.55 | 0.58 | 0.45 | 0.47 | 0.52 | 0.49 | 0.50 | 0.43 | ||||
X15 | 0.34 | 0.39 | 0.37 | 0.46 | 0.33 | 0.31 | 0.39 | 0.43 | 0.23 | 0.33 | 0.46 | 0.36 | 0.47 | 0.50 | 0.19 | |||
X16 | 0.34 | 0.40 | 0.40 | 0.46 | 0.27 | 0.27 | 0.38 | 0.46 | 0.20 | 0.33 | 0.47 | 0.36 | 0.47 | 0.47 | 0.30 | 0.15 | ||
X17 | 0.32 | 0.39 | 0.33 | 0.46 | 0.29 | 0.29 | 0.32 | 0.46 | 0.17 | 0.30 | 0.47 | 0.33 | 0.47 | 0.49 | 0.24 | 0.26 | 0.11 | |
X18 | 0.33 | 0.40 | 0.41 | 0.47 | 0.35 | 0.32 | 0.41 | 0.44 | 0.28 | 0.34 | 0.52 | 0.37 | 0.49 | 0.51 | 0.30 | 0.31 | 0.24 | 0.20 |
注:浅灰色填充表示交互作用类型为双因子增强,加粗字体表示交互作用类型为非线性增强。 |
[1] |
|
[2] |
徐峰, 张新, 王高山, 等. 基于Web of Science的共享民宿研究综述[J]. 旅游学刊, 2020, 35(10):135-146.
[
|
[3] |
|
[4] |
|
[5] |
国家信息中心. 中国共享住宿发展报告2020[EB/OL]. (2020-07-23) [2021-06-10]. http://www.sic.gov.cn/News/557/10549.htm
[The State Information Center. Annual report on China's sharing accommodation development in 2020[EB/OL]. (2020-07-23) [2021-06-10]. http://www.sic.gov.cn/News/557/10549.htm
|
[6] |
|
[7] |
|
[8] |
|
[9] |
周恺, 和琳怡, 张一雯. 共享短租平台的概念发展、市场影响和空间交互关系研究综述[J]. 地理科学进展, 2020, 39(11):1934-1943.
[
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
李莉, 侯国林, 夏四友. 上海市共享住宿时空格局及影响因素识别[J]. 人文地理, 2021, 36(1):104-114, 154.
[
|
[30] |
梅林, 姜洪强. 基于Airbnb数据的北京市民宿空间分异过程、因素与趋势[J]. 经济地理, 2021, 41(3):213-222.
[
|
[31] |
|
[32] |
|
[33] |
李涛, 朱鹤, 王钊, 等. 苏南乡村旅游空间集聚特征与结构研究[J]. 地理研究, 2020, 39(10):2281-2294.
[
|
[34] |
闫丽英, 李伟, 杨成凤, 等. 北京市住宿业空间结构时空演化及影响因素[J]. 地理科学进展, 2014, 33(3):432-440.
[
|
[35] |
胡小芳, 李小雅, 王天宇, 等. 民宿空间分布的集聚模式与影响因素研究——基于杭州、湖州、恩施的比较[J]. 地理科学进展, 2020, 39(10):1698-1707.
[
|
[36] |
龙飞, 戴学锋, 张书颖. 基于L-R-D视角下长三角地区民宿旅游集聚区的发展模式[J]. 自然资源学报, 2021, 36(5):1302-1315.
[
|
[37] |
Inside Airbnb. About Inside Airbnb[EB/OL]. [2021-01-18]. http://insideairbnb.com/about.html
|
[38] |
|
[39] |
周侃, 樊杰. 中国环境污染源的区域差异及其社会经济影响因素——基于339个地级行政单元截面数据的实证分析[J]. 地理学报, 2016, 71(11):1911-1925.
[
|
[40] |
|
[41] |
王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1):116-134.
[
|
[42] |
|
[43] |
沈士琨, 史春云, 张大园, 等. 江苏省乡村旅游地空间分布及其影响因素研究[J]. 中国生态旅游, 2021, 11(3):455-467.
[
|
[44] |
宋辞, 裴韬. 北京市多尺度中心特征识别与群聚模式发现[J]. 地球信息科学学报, 2019, 21(3):384-397.
[
|
[45] |
黄震方, 葛军莲, 储少莹. 国家战略背景下旅游资源的理论内涵与科学问题[J]. 自然资源学报, 2020, 35(7):1511-1524.
[
|
[46] |
陆林, 肖洪根, 周尚意. 中国旅游地理研究的重点问题: 学术内涵、核心概念和未来方向[J]. 中国生态旅游, 2021, 11(1):42-51.
[
|
/
〈 |
|
〉 |